Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Structural and elastic properties of strained Mg1_xSrxSe revealed

Identifieur interne : 000040 ( Main/Repository ); précédent : 000039; suivant : 000041

Structural and elastic properties of strained Mg1_xSrxSe revealed

Auteurs : RBID : Pascal:14-0053587

Descripteurs français

English descriptors

Abstract

For the first time, detailed first principle calculations within the generalized gradient approximation (GGA) are performed to study electronic structure and elastic properties of Mg1_xSrxSe ternary alloys at various concentrations of Sr atoms. Band gap energies are predicted for the ternary alloys with x=0.47 concentration to have a minimum energy gap of 2.07 eV. From our calculations the alloy closely follows Vegard's law with a small bowing parameter of -0.0103 Å. Calculated elastic constants are given along with other elastic properties for the ternary alloys. Among the examined structures, Sr-rich alloys display a large Poisson's ratio indicating a stretch densifying property. The resemblance of the calculated lattice parameter at low Sr concentration to that of InAs suggests that MgSrSe alloys can be experimentally grown on indium arsenide.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:14-0053587

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Structural and elastic properties of strained Mg
<sub>1_x</sub>
Sr
<sub>x</sub>
Se revealed</title>
<author>
<name sortKey="Adetunji, B I" uniqKey="Adetunji B">B. I. Adetunji</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, University of Agriculture</s1>
<s2>PMB 2240 Abeokuta</s2>
<s3>NGA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Nigeria</country>
<wicri:noRegion>PMB 2240 Abeokuta</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Abdus Salam International Centre for Theoretical Physics</s1>
<s2>Strada Costiera 11, 1-34014</s2>
<s3>ITA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Italie</country>
<wicri:noRegion>Abdus Salam International Centre for Theoretical Physics</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Adebayo, G A" uniqKey="Adebayo G">G. A. Adebayo</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, University of Agriculture</s1>
<s2>PMB 2240 Abeokuta</s2>
<s3>NGA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Nigeria</country>
<wicri:noRegion>PMB 2240 Abeokuta</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Abdus Salam International Centre for Theoretical Physics</s1>
<s2>Strada Costiera 11, 1-34014</s2>
<s3>ITA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Italie</country>
<wicri:noRegion>Abdus Salam International Centre for Theoretical Physics</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="De Gironcoli, S" uniqKey="De Gironcoli S">S. De Gironcoli</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>International School for Advanced Studies, SISSA, CNR-IOM, via Bonomea, 265</s1>
<s2>1-34136 Trieste</s2>
<s3>ITA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Italie</country>
<wicri:noRegion>1-34136 Trieste</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>DEMOCRITOS Simulation Centre, CNR-IOM, via Bonomea, 265</s1>
<s2>1-34136 Trieste</s2>
<s3>ITA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Italie</country>
<wicri:noRegion>1-34136 Trieste</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">14-0053587</idno>
<date when="2014">2014</date>
<idno type="stanalyst">PASCAL 14-0053587 INIST</idno>
<idno type="RBID">Pascal:14-0053587</idno>
<idno type="wicri:Area/Main/Corpus">000146</idno>
<idno type="wicri:Area/Main/Repository">000040</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0038-1098</idno>
<title level="j" type="abbreviated">Solid state commun.</title>
<title level="j" type="main">Solid state communications</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Band bowing</term>
<term>Band structure</term>
<term>Chemical composition</term>
<term>Density functional method</term>
<term>Elastic constants</term>
<term>Electronic structure</term>
<term>Generalized gradient approximation</term>
<term>Lattice parameters</term>
<term>Magnesium Strontium Selenides Mixed</term>
<term>Vegard law</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Composition chimique</term>
<term>Méthode fonctionnelle densité</term>
<term>Approximation gradient généralisé</term>
<term>Structure électronique</term>
<term>Structure bande</term>
<term>Loi Vegard</term>
<term>Constante élasticité</term>
<term>Magnésium Strontium Séléniure Mixte</term>
<term>Paramètre cristallin</term>
<term>Gauchissement de bande</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">For the first time, detailed first principle calculations within the generalized gradient approximation (GGA) are performed to study electronic structure and elastic properties of Mg
<sub>1_x</sub>
Sr
<sub>x</sub>
Se ternary alloys at various concentrations of Sr atoms. Band gap energies are predicted for the ternary alloys with x=0.47 concentration to have a minimum energy gap of 2.07 eV. From our calculations the alloy closely follows Vegard's law with a small bowing parameter of -0.0103 Å. Calculated elastic constants are given along with other elastic properties for the ternary alloys. Among the examined structures, Sr-rich alloys display a large Poisson's ratio indicating a stretch densifying property. The resemblance of the calculated lattice parameter at low Sr concentration to that of InAs suggests that MgSrSe alloys can be experimentally grown on indium arsenide.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0038-1098</s0>
</fA01>
<fA02 i1="01">
<s0>SSCOA4</s0>
</fA02>
<fA03 i2="1">
<s0>Solid state commun.</s0>
</fA03>
<fA05>
<s2>178</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Structural and elastic properties of strained Mg
<sub>1_x</sub>
Sr
<sub>x</sub>
Se revealed</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>ADETUNJI (B. I.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>ADEBAYO (G. A.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>DE GIRONCOLI (S.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Physics, University of Agriculture</s1>
<s2>PMB 2240 Abeokuta</s2>
<s3>NGA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Abdus Salam International Centre for Theoretical Physics</s1>
<s2>Strada Costiera 11, 1-34014</s2>
<s3>ITA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>International School for Advanced Studies, SISSA, CNR-IOM, via Bonomea, 265</s1>
<s2>1-34136 Trieste</s2>
<s3>ITA</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>DEMOCRITOS Simulation Centre, CNR-IOM, via Bonomea, 265</s1>
<s2>1-34136 Trieste</s2>
<s3>ITA</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA20>
<s1>46-49</s1>
</fA20>
<fA21>
<s1>2014</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>10917</s2>
<s5>354000501688980100</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>39 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0053587</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Solid state communications</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>For the first time, detailed first principle calculations within the generalized gradient approximation (GGA) are performed to study electronic structure and elastic properties of Mg
<sub>1_x</sub>
Sr
<sub>x</sub>
Se ternary alloys at various concentrations of Sr atoms. Band gap energies are predicted for the ternary alloys with x=0.47 concentration to have a minimum energy gap of 2.07 eV. From our calculations the alloy closely follows Vegard's law with a small bowing parameter of -0.0103 Å. Calculated elastic constants are given along with other elastic properties for the ternary alloys. Among the examined structures, Sr-rich alloys display a large Poisson's ratio indicating a stretch densifying property. The resemblance of the calculated lattice parameter at low Sr concentration to that of InAs suggests that MgSrSe alloys can be experimentally grown on indium arsenide.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B60B20D</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Composition chimique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Chemical composition</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Méthode fonctionnelle densité</s0>
<s5>04</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Density functional method</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Approximation gradient généralisé</s0>
<s5>05</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Generalized gradient approximation</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Structure électronique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Electronic structure</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Structure bande</s0>
<s5>08</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Band structure</s0>
<s5>08</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Loi Vegard</s0>
<s5>09</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Vegard law</s0>
<s5>09</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Constante élasticité</s0>
<s5>10</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Elastic constants</s0>
<s5>10</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Magnésium Strontium Séléniure Mixte</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>11</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Magnesium Strontium Selenides Mixed</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>11</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Mixto</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>11</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Paramètre cristallin</s0>
<s5>12</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Lattice parameters</s0>
<s5>12</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Gauchissement de bande</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Band bowing</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fN21>
<s1>069</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000040 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000040 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:14-0053587
   |texte=   Structural and elastic properties of strained Mg1_xSrxSe revealed
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024